Synthesis of Telechelic Polyphosphazenes via the Ambient Temperature Living Cationic Polymerization of Amino Phosphoranimines

Harry R. Allcock,* James M. Nelson,† Robbyn Prange, Chester A. Crane, and Christine R. de Denus

Department of Chemistry, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802

Received March 2, 1999; Revised Manuscript Received June 23, 1999

ABSTRACT: A method for the synthesis of well-defined mono-, di-, and mixed-telechelic polyphosphazenes produced via a living cationic polymerization of phosphoranimines is described. Amino phosphoranimines $R-NH(CF_3CH_2O)_2P=NSiMe_3$ (R=Ph-, p-BrPh-, $p\text{-H}_3CPh-$, $CH_2=CHCH_2-$, and $CH_2=CHPh-$) were synthesized via a reaction between a bromophosphoranimine and the appropriate organic amine. Ditelechelic polymers $[R-NH]_2-[Cl_2P=N]_n$ were prepared by quenching living poly(dichlorophosphazene) chains, $[Cl_3P=N(Cl_2P=N)_n-PCl_3]^+[PCl_6]^-$ with small quantities of the amino phosphoranimines. Cationic initiators of the amino phosphoranimines were also generated using PCl_5 and were used to polymerize $Cl_3P=NSiMe_3$, to give monotelechelic poly(dichlorophosphazenes). In addition, a mixed telechelic system was produced by the termination of an allylamino monotelechelic poly(dichlorophosphazene) chain with a bromoanilino phosphoranimine. In all cases, displacement of the chlorine atoms with sodium trifluoroethoxide yielded hydrolytically stable telechelic polymers with controlled molecular weights and low polydispersities.

Introduction

Polyphosphazenes form one of the largest and most diverse classes of inorganic backbone polymer systems. To date, several hundred different polymers of this type have been synthesized, with a range of physical and chemical properties that rival those of synthetic organic and inorganic macromolecules. 1-4 The fundamental precursor to most polyphosphazenes is poly(dichlorophosphazene), $[Cl_2P=N]_n$ (2), which undergoes macromolecular substitution with a wide variety of nucleophiles to yield the corresponding derivatized polymers.^{5–8} This allows for facile changes to the side group structure which, in turn, permits the modification of bulk and surface properties such as solubility, refractive index, hydrophobicity or hydrophilicity, electrical conductivity, nonlinear optical activity, and glass transition temperatures.4 Although several synthetic routes exist for obtaining 2, two general methods are commonly used in our laboratory. The classical approach is a hightemperature ring-opening polymerization of hexachlorocyclotriphosphazene which gives a high molecular weight polymer with a broad polydispersity.^{1,2} The second approach is an ambient temperature living cationic induced polymerization of trichlorophosphoranimine (1) in the presence of a suitable initiator, such as PCl_5 or $[Cl_3P=N-PCl_3]^+[PCl_6]^-$ (Scheme 1). In contrast to the classical approach, this second route provides molecular weight control with narrow polydispersities. 9-13 An extension of this method includes the recent use of the trifunctional cationic species N-{CH₂- $CH_2NH[(CF_3CH_2O)_2P=N-PCl_3]^+[PCl_6]^-\}_3$ to polymerize 1, thus producing the first star-branched polyphosphazenes.14 Furthermore, the utility of the cationic living polymerization of Cl₃P=NSiMe₃ has allowed the production of block copolymers, unattainable via ringopening polymerization methods. For example, phosphazene-phosphazene block copolymers $[Cl_2P=N]_m$ [PhClP=N]_n with different side groups have been syn-

Scheme 1

$$Cl \longrightarrow NSiMe_3 \longrightarrow Solvent$$
 $Cl_3P \longrightarrow N \longrightarrow PCl_3^+PCl_6^ Cl_3P \longrightarrow N \longrightarrow PCl_3^+PCl_6^-$

thesized via the stepwise polymerization of monomers such as **1** and PhCl₂P=NSiMe₃.¹³ Replacement of the chlorine atoms with the use of an appropriate nucleophile yields new polymers with tailored properties.

Until recently, the preparation of block copolymers containing polyphosphazenes has been limited to species with two phosphazene components. A more important objective is the synthesis of macromolecules that contain phosphazene and organic polymer blocks. However, the synthesis of telechelic polyphosphazenes which may be used to couple with preformed organic polymers has proved to be difficult. Nevertheless, the recent use of commercially available organic functionalized polymers such as MeO-[CH₂CH₂O]_nCH₂CH₂NH₂ has provided an alternative route to organic—phosphazene block copolymers.¹⁵

The growing demand for block copolymers with special properties has stimulated a great deal of interest in recent years. 16-20 Access to hybrid copolymers of polyphosphazenes with organic or other inorganic polymers offers a number of advantages relative to their respective homopolymers. The physical, mechanical, and electronic properties of the copolymer can be adjusted in accordance with those of the individual monomeric components. Thus, many of the valuable properties of the respective phosphazene homopolymers, such as thermal and oxidative stability or fire retardance, may be imparted into the copolymer without sacrificing the overall bulk properties. 1.2 Potential applications of such compounds may include uses as nonburning elastomers, flame-retardant foams, or solid polymer electrolytes.

A viable method for the synthesis of block copolymers is through the use of telechelic polymers. 19-22 Telechelic

 $^{^{\}dagger}$ Present address: 3M Corporate Process Technology Center, St. Paul, MN 55144.

polymers have been prepared via free radical and living methods. However, radical methods often yield undesirable features such as branching or high polydispersities.²³ As a result, much of the research on telechelic organic polymers is now based on living anionic polymerization methods which allow for easy end group control. 16,23-28 For instance, the introduction of functional groups via the termination of polystyrene living chain ends has been investigated extensively. These materials can be used either as scaffolds from which monomers can be polymerized or as linking groups which can couple with other preformed polymers to give the corresponding block copolymers. 17,18

The ability to prepare telechelic polymers from living anionic systems prompted our interest in the generation of similar materials via the living cationic polymerization of phosphoranimines. Previous work has demonstrated that the tris(organo)phosphoranimine species, (CF₃CH₂O)₃P=NSiMe₃, can be used to quench living cationic chain ends. 10 Thus, it seemed possible that the polymer end group structure could be controlled while introducing additional functionalities via the use of tris-(organo)phosphoranimines such as **5a**-**e**. The approach to phosphazene block copolymers described here involves the preparation of end-functionalized materials that are capable of undergoing further reactions. The advantage of employing these materials stems from their versatility in the production of block copolymers, either A-B, A-B-A, or A-B-C, which can be phosphazene-organic or phosphazene-inorganic in nature.

In this paper we report the first telechelic polyphosphazenes synthesized via a living cationic polymerization of phosphoranimines at ambient temperature. Ditelechelic polymers are prepared by utilizing monomers **5a**-**e** as quenching agents for the polymerization process. In addition, the use of short chain cationic initiators, such as R-NH[(CF₃CH₂O)₂P=N-PCl₃]+- $[PCl_6]^-$ (8a-d), to induce the polymerization of 1 permits the preparation of monotelechelic polymers. Furthermore, the generation of a mixed telechelic polyphosphazene using a combination of the above methods is described.

Results and Discussion

Synthesis of the Functional Phosphoranimines R-NH(CF₃CH₂O)₂P=NSiMe₃ (5a-e). Phosphoranimines such as Br(CF₃CH₂O)₂P=NSiMe₃ (3) are known to readily undergo bromine replacement reactions in the presence of amines to produce R-NH(CF₃CH₂O)₂P= NSiMe₃ species.^{29,30} With this in mind, stoichiometric amounts of five different primary amines (R = Ph - (4a), p-BrPh- (**4b**), p-H₃CPh- (**4c**), CH_2 =CHCH₂- (**4d**), and CH_2 =CH-Ph- (**4e**)) were allowed to react with **3** in THF and NEt₃ at -78 °C to produce the amino phosphoranimines $R-NH(CF_3CH_2O)_2P=NSiMe_3$ (5a-e) (Scheme 2). These products were obtained in good yields after purification by vacuum distillation and were used as initiators and/or terminators in subsequent polymerization reactions.

Aniline (4a) was chosen initially as a terminator molecule in order to examine the mechanism of termination and initiation of the living cationic polymerization of 1. The amino substituents 4b-e were selected because of their functional groups which readily undergo a variety of fundamental organic transformations or polymerizations. For instance, we are currently investigating the coupling of amino-terminated polystyrene

Scheme 2

OCH₂CF₃

Br — P = NSiMe₃

OCH₂CF₃

RNH₂

NEt₃/THF

OCH₂CF₃

R-(H)N — P = NSiMe₃

OCH₂CF₃

Sa-e

$$R = Ph (5a)$$

$$p-BrPh (5b)$$

$$p-MePh (5c)$$

$$CH2CHCH2 (5d)$$

$$CH2CHCH2 (5d)$$

$$CH2CHPh (5e)$$

with 7b and 10b in an attempt to produce polystyrenephosphazene block copolymers. Similarly, polyphosphazene-siloxane block copolymers are being investigated via hydrosilylation reactions employing 7d and 10d.32 Future possibilities also exist for conducting condensation polymerizations by the conversion of the p-tolyl end unit into a reactive carboxylic acid.

Synthesis of Ditelechelic Polyphosphazenes. As mentioned previously, telechelic polyphosphazenes are attractive precursors for the preparation of block copolymers. In an attempt to produce telechelic polyphosphazenes, the living nature of the cationic polymerization process was investigated. The addition of successive amounts of amino phosphoranimines 5a-e to a living chain of poly(dichlorophosphazene) allowed an examination to be made of the effects this would have on quenching the polymerization. Figure 1a illustrates a typical ³¹P NMR spectrum which was obtained for a living poly(dichlorophosphazene) chain. The intense peak at -17 ppm ($\hat{\text{Cl}}_2P$) is characteristic of the middle units of the polymer chain $[N=PCl_2]_n$ while the downfield peaks correspond to the terminal PCl_3^+ (d, +8 ppm) as well as the switching groups $PCl_2PCl_3^+$ (t, -14 ppm) and PCl_2PCl_3 + (t, -15 ppm). Figure 1b,c indicates the changes that occur when successive amounts of the end cap are added to the reaction mixture. As illustrated, 1 equiv of the amino phosphoranimine (Figure 1b) was not sufficient to terminate the living polymer chain, as indicated by the resonance from the remaining PCl₃⁺. Subsequent addition of 1.2 equiv (Figure 1c) of amino phosphoranimine was followed by the disappearance of the PCl₃⁺ resonance, and this confirmed that the living polyphosphazene end group had been quenched, thus producing a ditelechelic system. The new resonance that appears between 0 and 1 ppm is attributed to the terminal P-NHR groups which are introduced via end-capping.

This methodology also allowed the controlled introduction of two terminal units onto the polymer chain.¹⁹ Scheme 3 outlines the general reaction sequence employed for the preparation of ditelechelic polymers 7ae. The length of the polyphosphazene chain was controlled by the ratio of Cl₃P=NSiMe₃ to PCl₅ in the initial step of the reaction. In all instances, the polymers were isolated in good yield after substitution of the halogen atoms with sodium trifluoroethoxide. It should be noted that all phosphorus atoms are in the P(V) state following substitution with sodium trifluoroethoxide; thus, a third CF₃CH₂O group is substituted onto one of the terminal phosphorus atoms of the polymer. In all instances, the low molecular weight polymers were isolated as adhesive solids; however, they became more crystalline as

the length of the polymer chain increased.

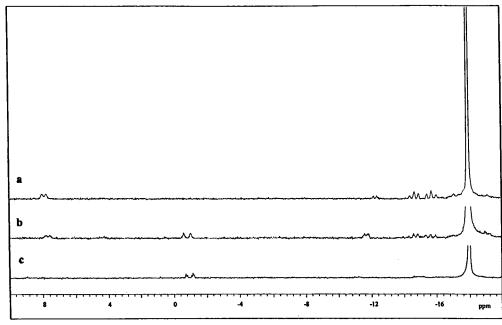


Figure 1. ³¹P NMR spectrum for (a) a living poly(dichlorophosphazene) chain. (b) One equivalent of amino phosphoranimine end cap added to living polymer. (c) Slight excess of amino phosphoranimine end cap added to quench the polymerization process.

Scheme 3

$$Cl_3P = N - PCl_3^+PCl_6^-$$

2

1) 2 equiv. 5a-e
2) NaOCH₂CF₃
 $OCH_2CF_3 - OCH_2CF_3$
 $OCH_2CF_3 - OCH_2CF_3$

Characterization of the polymers was performed using multinuclear NMR, gel permeation chromatography (GPC), and MALDI mass spectrometry. Both ¹H and ¹³C NMR were utilized to detect the presence of the new end groups and disappearance of the trimethylsilyl group from the amino phosphoranimine. In all cases, the end groups were detected in the ¹H spectrum. However, as the length of the polymer chain increased, their detection via 13C NMR became difficult and sometimes impossible. The molecular weights of these polymers, as determined by gel permeation chromatography, are listed in Table 1. The polymers had low polydispersities across a wide range of molecular weights, which increased with an increased monomer-to-initiator ratio. Figure 2 illustrates the GPC chromatograms for polymer 7b which show the change in molecular weight as the ratio of 1 to short chain initiator (6b) was varied. The low polydispersities obtained for these materials is attributed to the living nature of the polymerization process, while the discrepancy between the calculated

Table 1. Molecular Weight Data for Ditelechelic **Polymers**

		9				
		$M_{ m n} imes 10^{-4}$				
polymer	solvent	M:I	founda	calcd ^b	PDI	
7a	CH_2Cl_2	50:1	3.69	2.50	1.06	
7b	CH_2Cl_2	10:1	1.22	0.57	1.10	
7b	CH_2Cl_2	20:1	1.52	1.05	1.09	
7b	CH_2Cl_2	25:1	1.64	1.30	1.06	
7b	CH_2Cl_2	30:1	2.19	1.54	1.09	
7b	CH_2Cl_2	40:1	2.79	2.03	1.13	
7b	CH_2Cl_2	60:1	3.75	3.00	1.12	
7c	toluene	14:1	1.05	0.75	1.12	
7c	toluene	20:1	1.47	1.04	1.16	
7c	toluene	40:1	2.52	2.01	1.19	
7c	toluene	60:1	4.51	2.99	1.08	
7 d	CH_2Cl_2	5:1	0.55	0.30	1.37	
7 d	CH_2Cl_2	10:1	0.98	0.55	1.05	
7 d	CH_2Cl_2	20:1	1.99	1.03	1.22	
7 d	CH_2Cl_2	40:1	3.87	2.00	1.08	
7e	CH_2Cl_2	20:1	1.59	1.04	1.14	
7e	CH_2Cl_2	40:1	2.91	2.02	1.08	
7e	CH_2Cl_2	60:1	4.43	2.99	1.18	
7e	CH_2Cl_2	80:1	6.10	3.96	1.08	

^a Obtained by GPC vs polystyrene standards. ^b Calculated from the initial ratio of monomer to PCl_5 initiator at 100% conversion.

GPC molecular weights may be due to an overestimation of molecular weight by GPC.33

MALDI mass spectroscopy was also performed on representative samples of these new materials. The MALDI spectrum of a nontelechelic CF₃CH₂O-[(CF₃CH₂O)₂- $P=N]_n-P-(OCH_2CF_3)_4$ polymer is shown in Figure 3a. The series of signals corresponds to the mass of a $CF_3CH_2O-[(CF_3CH_2O)_2P=N]_n-P-(OCH_2CF_3)_4$ polymer as well as a sodium cation (from the matrix). For example, the signal at mass 4681 corresponds to $[(CF_3CH_2O)_2P=N]_{17}$ (mass 4131), the CF_3CH_2O and -P-(OCH₂CF₃)₄ end groups (mass 527), and a sodium cation (mass 23). The distance calculated between the peaks is assigned to that of a [(CF₃CH₂O)₂P=N]_n repeat unit (243 g/mol). A comparison spectrum for endfunctionalized polymer 7d is shown in Figure 3b, which reveals a mass difference of 86 amu between the signals obtained for a polymer of similar repeat unit. In this

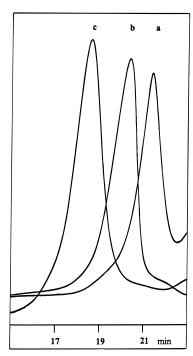


Figure 2. Comparative GPCs for ditelechelic polymers 7b obtained from monomer (1) to PCl₅ ratios of (a) 10:1, (b) 30:1, and (c) 60:1.

spectrum, the signal at 4592 also corresponds to n =17, plus the $H_2C = CHCH_2N(H)$ and $-P - (OCH_2CF_3)_3$ HNCH₂CH=CH₂ end groups (mass 440) and a sodium cation. This difference in mass of the nontelechelic polymer and 7b is thus due to the difference in the weight of the end groups (mass 269) which corresponds to the presence of two H₂C=CHCH₂N(H) end groups on the ditelechelic polymer chain as opposed to two CF₃-CH₂O end groups. This supports the evidence that the polymer chains are indeed ditelechelic in nature.

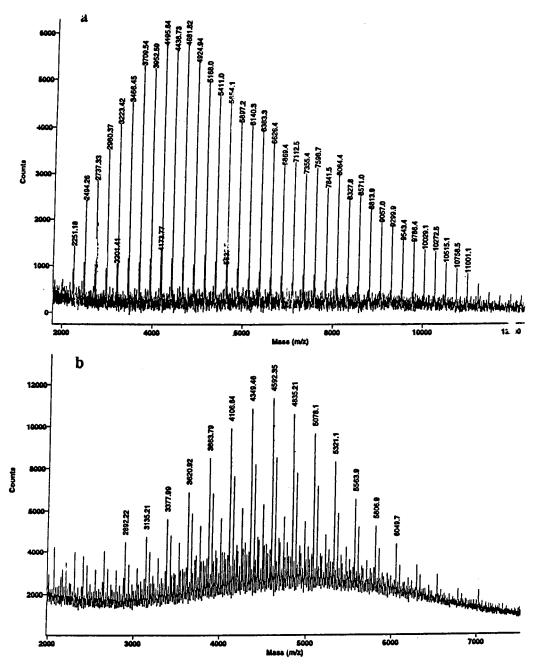
Synthesis of Monotelechelic Polyphosphazenes. Monotelechelic materials are important for the future production of diblock copolymers with high certainty. 19 Initial attempts to prepare monotelechelic polymers through the addition of 1 equiv of 5a-e to a living poly-(dichlorophosphazene) chain were not successful. This was due to the formation of a mixture of mono- and ditelechelics and homopolymer, which resulted in the production of materials with broad molecular weight distributions. On the basis of these results, an alternative synthetic method for the production of monotelechelic polyphosphazenes was employed. This method is an extension of the previously reported production of diand triblock poly(ethylene oxide)-polyphosphazene copolymers.¹⁵

Scheme 4 outlines the strategy used for the production of monotelechelic polyphosphazenes. The amino phosphoranimines (5a-d) were first initiated with 2 molar equiv of PCl₅ at −78 °C in CH₂Cl₂ or toluene to generate the cationic species R-NH[(CF₃CH₂O)₂P=N- PCl_3]⁺[PCl_6]⁻ (**8a**-**d**). The formation of these species was confirmed in situ by the presence of two doublets in the ^{31}P NMR spectrum for the N- PCl_3^+ and (CF₃-CH₂O)₂*P*=N units. Subsequent reaction of these initiators with a given amount of Cl₃P=NSiMe₃ (1) allowed the preparation of monotelechelic poly(dichlorophosphazenes) with specific chain lengths. The progress of the reaction was monitored by ³¹P NMR spectroscopy, and it was found that all polymerizations were complete

Scheme 4

$$R-(H)N \longrightarrow P \longrightarrow NSiMe_3$$
 OCH_2CF_3
 OCH_2CF_3

Table 2. Molecular Weight Data for Monotelechelic Polymers


		$M_{ m n} imes 10^{-4}$				
polymer	solvent	M:I	found ^a	$calcd^b$	PDI	
10a	CH_2Cl_2	40:1	1.34	1.00	1.30	
10b	CH_2Cl_2	20:1	0.62	0.53	1.25	
10b	CH_2Cl_2	40:1	1.34	1.01	1.15	
10b	CH_2Cl_2	80:1	2.41	1.99	1.25	
10b	CH_2Cl_2	160:1	4.53	3.93	1.38	
10c	toluene	10:1	1.05	0.28	1.31	
10c	toluene	20:1	2.03	0.52	1.19	
10c	toluene	40:1	3.02	1.01	1.23	
10c	toluene	60:1	4.23	1.49	1.20	
10d	CH_2Cl_2	10:1	0.41	0.27	1.09	
10d	CH_2Cl_2	20:1	0.83	0.52	1.20	
10d	CH_2Cl_2	40:1	1.59	1.00	1.13	

^a Obtained by GPC vs polystyrene standards. ^b Calculated from the initial ratio of monomer to amino phosphoranimine initiator at 100% conversion.

within 24 h. Integration of the ³¹P NMR resonances associated with the polymer was consistent with theoretical values. Hydrolytically stable monotelechelic polyphosphazenes (10a-d) were obtained after macromolecular substitution of the chlorine atoms with sodium trifluoroethoxide. Once again, all the new materials were characterized by spectroscopic and analytical methods. Molecular weights obtained from GPC versus polystyrene standards spanned the range of 0.41-4.53 \times 10⁴ (Table 2). The amino phosphoranimine **5e** was not used as a short chain cationic initiator due to adverse reactions that occurred when PCl₅ was added to this material. It is believed that the styrene component of the phosphoranimine may also have reacted with the PCl₅, thereby preventing the isolation of the desired initiator molecule.

Synthesis of a Mixed Telechelic Polyphosphazene. The control possible over the initiation and termination process for the living polymerization of 1 suggested the possible preparation of mixed telechelic polymers. The existence of two different functional groups on the ends of a polymer chain is an important attribute for synthesizing compounds of this nature. The different end groups can be used to produce A-B, A-B-A, or A-B-C type block copolymers either through the polymerization of monomers that undergo unrelated reaction mechanisms or through linking reactions with other telechelic polymers. 19

Thus, the synthesis of a mixed telechelic polymer that contains the *p*-bromoanilino and allylamino end groups was undertaken (Scheme 5). The cationic initiator (8d) was first generated in a 1:2 molar reaction between the allylamino phosphoranimine (5d) and PCl₅ in CH₂Cl₂. Following complete formation of the initiator, 50 equiv of 1 was added to the reaction mixture to produce 9d.

Figure 3. Comparative MALDI mass spectra for (a) $-[(CF_3CH_2O)_2P=N]_D$ and (b) $[H_2C=CHCH_2N(H)]_2-[(CF_3CH_2O)_2P=N]_D$.

Addition of the *p*-bromoanilino end cap (**5b**) resulted in the formation of a mixed telechelic poly(dichlorophosphazene) species (**11**) which was rendered hydrolytically stable by reaction with sodium trifluoroethoxide. The ¹H NMR spectrum obtained for polymer **12** indicated the presence of the bromoanilino resonances at 7.4–7.1 ppm while those of the allylamine end group appeared as multiplets at 5.4, 5.1, 4.7, and 3.6 ppm (Figure 4). In addition, the large multiplet present at 4.6-4.2 ppm is due to the trifluoroethoxy protons of the $[(CF_3CH_2O)_2P=N]_n$ repeat units along the polymer chain. GPC analysis of this material indicated a molecular weight versus polystyrene standards of 2.21×10^4 with a polydispersity index of 1.09.

Summary

The production of the first mono-, di-, and mixedtelechelic polyphosphazenes synthesized from various amino phosphoranimines and an ambient temperature polymerization process have been demonstrated. Both the efficiency and flexibility of this approach have been demonstrated by the ease of control of both the length of the polymer backbone and the nature of its end groups. In all instances, the polymers had narrow polydispersities and controlled molecular weights. These types of telechelic materials are important because of their potential use as macromonomers in the synthesis of block copolymers. Investigations involving the preparation of phosphazene—organic and phosphazene—inorganic block copolymers are currently underway in our laboratory.

Experimental Section

Materials. Lithium bis(trimethylsilyl)amide, allylamine, *p*-bromoaniline, *p*-toluidine, aniline, and 4-aminostyrene were obtained from Aldrich and were used without further purification. Phosphorus pentachloride (Aldrich) was purified by sublimation under vacuum prior to use. 1,1,1-Trifluoroethanol

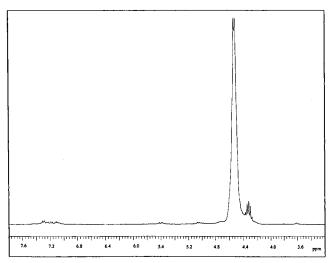


Figure 4. ¹H NMR (360 MHz) evidence for the preparation of a mixed telechelic polyphosphazene (12).

Scheme 5 OCH₂CF₃ $H_2C=CHCH_2-(H)N$ ·PCl₃ *PCl₆ OCH₂CF₃ 9d 5b OCH₂CF₃ OCH2CF3 N(H)—Ph—Br $H_2C=CHCH_2-(H)N$ OCH2CF3 J_n ÒCH₂CF₃ NaOCH2CF3 OCH_2CF_3 $OCH_2CF_3)_2$ OCH₂CF₃ -N(H)—Ph—Br H2C=CHCH2-(H)N-OCH₂CF₃ OCH₂CF₃ 12

was dried over CaH2 and distilled before use. Cl3P=NSiMe3 and Br(CF₃CH₂O)₂P=NSiMe₃ were synthesized and purified by literature procedures.^{9,30} Tetrahydrofuran, toluene, and hexane (Aldrich) were distilled into the reaction flask from sodium benzophenone ketyl under an atmosphere of dry argon. Dichloromethane (Aldrich) was dried and distilled from CaH₂ and then from P₂O₅ into the reaction flask.

All glassware was dried overnight in an oven or flame-dried under vacuum before use. The reactions were performed using standard Schlenk techniques or in an inert atmosphere glovebox (Vacuum Atmospheres) under an atmosphere of dry argon or nitrogen.

Equipment. 1H, 13C, and 31P spectra were recorded on a Bruker WM-360 NMR spectrometer operated at 360, 146, and 90.27 MHz, respectively. ¹H and ¹³C NMR spectra are referenced to solvent signals while 31P NMR chemical shifts are relative to 85% phosphoric acid as an external reference, with positive shift values downfield from the reference. Molecular weights were estimated using a Hewlett-Packard HP 1090 gel

permeation chromatograph equipped with an HP-1047A refractive index detector, American Polymer Standards AM gel 10 mm and AM gel 10 mm 10⁴ Å column, and calibrated versus polystyrene standards (Polysciences). The samples were eluted at 40 °C with a 0.1 wt % solution of tetra-n-butylammonium nitrate (Aldrich) in THF (OmniSolv). MALDI mass spectra were collected using a Voyager DESTR MALDI-TOF spectrometer.

Synthesis of Amino Phosphoranimines 5a-e. A mixture of Br(CF₃CH₂O)₂P=NSiMe₃ (3) (5.0 g, 12.59 mmol) and NEt_3 (1.27 g, 12.59 mmol) in THF (200 mL) was cooled to -78°C in a dry ice/acetone bath. To this solution was added 12.59 mmol of the desired primary amine (4a-e) in 50 mL of THF over a period of 20 min. The reaction mixture was allowed to warm slowly to room temperature and was stirred overnight. All volatiles were removed in vacuo, and the salts were washed with hexanes. After removal of the salts by filtration, the volatiles were removed under reduced pressure to leave the amino phosphoranimines $(5\mathbf{a} - \mathbf{e})$ as oils. These were isolated by distillation under high vacuum to yield the pure amino phosphoranimines.

For **5a**: Distillation under high vacuum (67–72 °C, 0.01 mmHg) gave 4.06 g (73%) of **5a**. ¹H NMR (CDCl₃): δ = 7.27 (d, J = 8.47 Hz, 2H, ArH), 7.50 (t, J = 7.13 Hz, 3H, ArH), 5.2 (br s, 1H, NH), 4.53-4.44 (m, 4H, OCH₂CF₃), 0.04 (s, 9H, Si- $(CH_3)_3$). ³¹P NMR (CDCl₃): $\delta = -8.66$ (s). ¹³C NMR (CDCl₃): $\delta = 138.34$ (1C, quaternary ArC), 128.41 (1C, ArC), 122.35 (q of d, J = 277.10, 5.75 Hz, 2C, OCH₂CF₃), 121.58, 117.60, 117, 51, 114.58 (4C, ArC), 61.53 (q of d, J = 37.41, 1.92 Hz, 2C, OCH_2CF_3), 1.69 (d, J = 1.78 Hz, 3C, $Si(CH_3)_3$). MS (CI): m/z= 409 (MH+, 96%), 94 (PhNH, 100%)), in good agreement with isotopic abundance calculations.

For **5b**: Distillation under high vacuum (95 °C, 0.02 mmHg) gave 4.83 g (79%) of **5b**. ¹H NMR (CDCl₃): $\delta = 7.30$ (d, J =8.49 Hz, 2H, ArH), 6.78 (d, J = 8.86 Hz, 2H, ArH), 4.80 (br s, 1H, NH), 4.28-4.03 (m, 4H, OCH₂CF₃), 0.00 (s, 9H, Si(CH₃)₃). ³¹P NMR (CDCl₃): $\delta = -10.71$ (s). ¹³C NMR (CDCl₃): $\delta =$ 138.13 (1C, quaternary ArC), 132.27, 132.20 (2C, ArC), 122.84 (q of d, J = 277.45, 10.87 Hz, 2C, OCH₂CF₃), 119.77, 119.68 (2C, ArC), 114.90 (1C, quaternary ArC), 62.46 (q of d, J =37.36, 3.81 Hz, 1C, O $C\hat{H}_2CF_3$), 2.73 (d, J = 3.71 Hz, 3C, Si-(CH₃)₃). MS (FAB+): m/z = 487 (MH⁺, 100%), 472 (M⁺ – CH₃, 76%), 316 (M^+ – NHPhBr, 22%), in good agreement with isotopic abundance calculations.

For **5c:** Distillation under high vacuum (109 °C, 1.4 mmHg) gave 4.52 g (85%) of **5c**. ¹H NMR (CDCl₃): $\delta = 7.08$ (d, J =8.22 Hz, 2H, ArH), 6.87 (d, J = 8.32 Hz, 2H, ArH), 4.82 (br s, 1H, NH), 4.34-4.14 (m, 4H, OCH₂CF₃), 2.30 (s, 3H, CH₃), 0.08 (s, 9H, Si(CH₃)₃). ³¹P NMR (CDCl₃): $\delta = -9.12$ (s). ¹³C NMR (CDCl₃): $\delta = 136.30$, 132.03 (2C, quaternary ArC), 129.84, 118.37, 118.29 (4C, ArC), 124.49 (q of d, J = 277.53, 11.35 Hz, 2C, OCH₂CF₃), 62.39 (q of d, J = 37.39, 3.83 Hz, 1C, OCH₂-CF₃), 20.36 (s, ArCH₃), 2.74 (d, J = 3.60 Hz, 3C, Si(CH₃)₃). MS (+FAB): m/z = 422 (MH⁺, 98.7%), 407 (M⁺ – CH₃, 100%), in good agreement with isotopic abundance calculations.

For **5d:** Distillation under high vacuum (29 °C, 0.10 mmHg) gave 3.28 g (70%) of **5d**. ¹H NMR (CDCl₃): $\delta = 5.87$ (m, 1H, CH_2CHCH_2), 5.14 (q, J = 6.38 Hz, 2H, CH_2CHCH_2), 3.52 (quin, J = 2.43 Hz, CH_2CHCH_2), 4.18 (quin, J = 3.65 Hz, OCH_2CF_3), 1.17 (t, J = 3.21 Hz, NH), 0.04 (s, 9H, Si(CH₃)₃). ³¹P NMR (CDCl₃): $\delta = -1.13$ (s). ¹³C NMR (CDCl₃): $\delta = 135.88$ (d, J =6.52 Hz, 1C, CH_2CHCH_2), 123.15 (q of d, J = 277.37, 10.96 Hz, 1C, OCH₂CF₃), 115.82 (1C, CH₂CHCH₂), 62.32 (q of d, J = 36.98, 4.23 Hz, OCH_2CF_3), 44.94 (1C, CH_2CHCH_2), 3.02 (d, J = 3.53 Hz, 3C, Si(CH₃)₃). MS (CI): $m/z = 372 \text{ (MH}^+, 64\%)$, 356 (M⁺ - CH₃, 10%) in good agreement with isotopic abundance calculations.

For **5e**: Distillation under high vacuum (65 °C, 0.01 mmHg) gave 4.26 g (78%) of **5e**. ¹H NMR (CDCl₃): $\delta = 7.08$ (d, J =4.20 Hz, 2H, ArH), 6.82 (d, J = 4.20 Hz, 2H, ArH), 6.50 (dd, J= 17.41, 3.30 Hz, 1H, CH_2CHPh), 5.50, 5.02 (2d, J= 8.79, 5.42 Hz, 2H, CH₂CHPh), 4.22-4.06 (m, 4H, OCH₂CF₃), 1.07 (t, J = 3.60 Hz, 1H, NH), 0.18 (s, 9H, $Si(CH_3)_3$). ³¹P NMR (CDCl₃): $\delta = -9.41$. ¹³C NMR (CDCl₃): $\delta = 137.88$ (1C, quaternary ArC), 135.35 (1C, CH₂CHPh), 131.32 (1C, quaternary ArC), 126.07 (2C, Ph), 121.99 (q of d, J=277.00, 5.61 Hz, 1C, OCH2 CF_3), 117.41, 117.33 (2C, Ph), 111.34 (1C, CH_2 Ph), 61.65 (q of d, J=37.13, 1.85 Hz, O CH_2 CF $_3$), 1.89 (3C, d, J=1.74 Hz, Si(CH $_3$) $_3$). MS (+FAB): m/z=435 (MH $^+$, 100%), 419 (M $^+$ – CH $_3$, 85%) in good agreement with isotopic abundance calculations.

Preparation of Ditelechelic Polyphosphazenes 7a-e. A solution of 10 mg (0.048 mmol) of PCl₅ in 10 mL of CH₂Cl₂ or toluene was placed in a flask and was stirred for 1 h. A solution of 2 in 2 mL of CH₂Cl₂ was then added to the flask. The reaction mixture was monitored by ³¹P spectroscopy until complete conversion of 1 to polymer had occurred. A slight excess of the desired amino phosphoranimine (5a-e) (based on the ratio of PCl₅:1 used in the reaction) was then added, and the solution was stirred for 8 h. All volatiles were removed under reduced pressure, and the end-capped poly(dichlorophosphazene) (6a-e) was dissolved in 10 mL of THF. To this was added a 2-fold excess, per chlorine atom, of 1.5 M sodium trifluoroethoxide in THF, and the reaction mixture was stirred for 24 h at 25 °C. The derivatized polymer (7a-e) was then recovered via precipitation into deionized water (3×) and hexane $(2\times)$ or dialysis.

For **7a:** ¹H NMR (CD₃COCD₃): δ = 7.31–7.12 (m, 5H, ArH), 4.68 (d, J = 7.48 Hz, OCH₂CF₃). ³¹P NMR (CD₃COCD₃): δ = -6.25 (s, [(CF₃CH₂O)₂P=N]_n), -1.61 (d, J = 65.07 Hz, PhNH-(CF₃CH₂O)₂P=N). ¹³C NMR not observed.

For **7b**: ¹H NMR (CD₃COCD₃): δ = 7.45–7.10 (m, 8H, ArH), 4.68–4.44 (m, O CH_2 CF₃). ³¹P NMR (CD₃COCD₃): δ = -6.31 (s, [(CF₃CH₂O)₂P=N]_n), -1.60 (d, J = 65.23 Hz, Br-PhNH-(CF₃CH₂O)₂P=N). ¹³C NMR (CD₃COCD₃): δ = 133.50, 132.62 (4C, quaternary ArC), 124.35 (q, J = 276.18 Hz, OCH₂CF₃), 123.93, 123.82 (8C, ArC), 64.54 (q, J = 37.76, O CH_2 CF₃).

For 7c: ¹H NMR (CD₃COCD₃): $\delta = 6.96$ (d, J = 8.01 Hz, 4H, ArH), 6.84 (d, J = 7.98 Hz, 4H, ArH), 4.56–4.25 (m, O*CH*₂-CF₃), 2.15 (s, 6H, ArCH₃). ³¹P NMR (CD₃COCD₃): $\delta = -6.28$ (s, [(CF₃CH₂O)₂P=N]_n), -1.60 (d, J = 68.26 Hz, H₃CPh(HN)-(CF₃CH₂O)₂P=N). ¹³C NMR (CD₃COCD₃): $\delta = 130.99$, 130.78 (4C, quaternary ArC), 124.00 (q, J = 276.70 Hz, OCH₂CF₃), 131.00 (s, 8C, ArC), 64.20 (q, J = 37.67, OCH₂CF₃), 20.96 (s, 2C, CH₃).

For **7d:** ¹H NMR (CD₃COCD₃): δ = 5.87 (m, 1H, CH₂CHCH₂), 5.14 (q, J = 6.38 Hz, 2H, CH_2 CHCH₂), 3.52 (quin, J = 2.43 Hz, CH₂CH CH_2), 4.18 (m, O CH_2 CF₃), 0.04 (s, 9H, Si(CH₃)₃). ³¹P NMR (CD₃COCD₃): δ = -6.29 (s, [(CF₃CH₂O)₂P=N]_n), -1.85 (d, J = 67.09 Hz, CH₂CHCH₂(HN)(CF₃CH₂O)₂P=N). ¹³C NMR (CDCl₃): δ = 137.94 (1C, CH₂CHCH₂), 124.25 (q, J = 208.12, 1C, OCH₂CF₃), 114.72 (1C, CH_2 CHCH₂), 63.25 (q, J = 33.25, O CH_2 CF₃), 44.15 (1C, CH₂CH CH_2).

For **7e:** ¹H NMR (CD₃COCD₃): δ = 7.03 (b, 4H, ArH), 6.61 (b, 1H, CH₂CHPh), 5.62, 5.09 (2d, J = 62.02 Hz, 2H, CH_2 -CHPh), 4.55 (d, J = 7.56 Hz, 4H, O CH_2 CF₃). ³¹P NMR (CD₃-COCD₃): δ = -6.25 (s, [(CF₃CH₂O)₂P=N]_n), -1.85 (d, J = 67.07 Hz, CH₂=CHPhNH(CF₃CH₂O)₂P=N). ¹³C NMR (THF): δ = 139.33 (1C, quaternary ArC), 136.59 (1C, CH₂CHPh), 132.33 (1C, quaternary ArC), 127.59 (2C, Ph), 123.98 (q, J = 276.22 Hz, 1C, OCH2 CF_3), 119.39 (2C, Ph), 111.34 (1C, CH_2 -Ph), 64.00 (q, J = 37.13 Hz, O CH_2 CF₃).

General Procedure for the Preparation of the Cationic Short Chain Initiators $R-NH(CF_3CH_2O)_2P=NPCl_3]^+$ [PCl₆]⁻ (8a-d). To a stirred solution of PCl₅ (0.104 g, 0.5 mmol) in CH₂Cl₂ (toluene, 7c) (200 mL) at -78 °C was added 0.25 mmol of the amino phosphoranimine (5a-d) quickly via syringe. The reaction mixture was stirred at -78 °C for 1 h and allowed to warm to room temperature. ³¹P NMR spectroscopy of the reaction mixture indicated the presence of the desired products as evidenced by two doublets for the terminal PCl₃⁺ and the (CF₃CH₂O)₂P=N phosphorus atoms. The initiator solution was then used for the polymerization of 1 in the production of monotelechelic polyphosphazenes 10a-d.

For **8a**: 31 P NMR (D₂O): $\delta = 10.39$ (d, J = 49.39 Hz, (CF₃-CH₂O)₂P=N), 2.28 (d, J = 50.67 Hz, Cl₃P=N).

For **8b**: ³¹P NMR (D₂O): δ = 11.06 (d, J = 48.04 Hz, (CF₃-CH₂O)₂P=N), 2.27 (d, J = 49.70 Hz, Cl₃P=N).

For **8c**: ³¹P NMR (D₂O): $\delta = 10.14$ (d, J = 52.67 Hz, (CF₃-CH₂O)₂P=N), 2.26 (d, J = 52.77 Hz, Cl₃P=N).

For **8d**: ³¹P NMR (D₂O): $\delta = 4.22$ (d, J = 52.61 Hz, (CF₃-CH₂O)₂P=N), -4.06 (d, J = 49.10 Hz, Cl₃P=N).

Polymerization of $Cl_3P=NSiMe_3$ (1) by R-NH-1 $[(CF_3CH_2O)_2P=NPCl_3]^+$ $[PCl_6]^-$ (8a-d) in Solution. To a stirred solution of the initiator (8a-d) in CH_2Cl_2 (toluene, 7c) was added 1. After a given amount of time (2-24 h, dependent on the monomer-to-initiator ratio), all the initial monomer (1) had reacted, as evidenced by the disappearance of the ³¹P NMR resonance for 1 at -54 ppm and the presence of a new resonance at -17.6 ppm for $[Cl_2P=N]_n$. In general, the NMR spectra contained the following identical peaks. For R-NH- $[(CF_3CH_2O)_2P=N-[Cl_2P=N]_n-PCl_3]^+[PCl_6]^-$ (9a-d): ³¹P NMR (D₂O): $\delta = 8.2$ (d, 1P, J = 29 Hz, $-PCl_3^+$), -14.5, -15.5 (t, 2P, J = 40 Hz, $-Cl_2P = N - Cl_2P = N - [Cl_2P = N]_n$, -17.6 ppm(br s, [N=PCl₂]_n). Following complete formation of the polymer, all volatile species were removed at reduced pressure. The residue was then dissolved in 10 mL of THF and treated with a 2-fold excess per chlorine atom of 1.5 M sodium trifluoroethoxide in THF. The mixture was stirred at 25 °C for 24 h to produce the corresponding macromolecule R-NH- $[(CF_3CH_2O)_2P=N]_n$ (10a-d). These polymers were isolated via precipitation into deionized water $(3\times)$ and hexane $(2\times)$.

For **10a**: 1 H NMR (CD₃COCD₃): δ = 7.31 (b, 5H, ArH), 4.68 (d, J = 7.48 Hz, OCH₂CF₃). 31 P NMR (CD₃COCD₃): δ = -6.25 (s, [(OCH₂CF₃)₂P=N]_n), -1.61 (d, J = 65.07 Hz, PhNH(CF₃-CH₂O)₂P=N), 2.56 (d, J = 65.07 Hz, N-P(OCH₂CF₃)₄). 13 C NMR not observed.

For **10b**: ¹H NMR (CD₃COCD₃): $\delta = 7.78-7.02$ (m, 4H, ArH), 4.72–4.34 (m, O*CH*₂CF₃). ³¹P NMR (CD₃COCD₃): $\delta = -6.29$ (s, [(OCH₂CF₃)₂P=N]_n), -1.81 (d, J = 67.76 Hz, R(HN)-(CF₃CH₂O)₂P=N). ¹³C NMR (CD₃COCD₃): $\delta = 134.81$, 132.63 (2C, quaternary ArC), 124.34 (q, J = 276.65 Hz, OCH₂CF₃), 118.62, 117.37 (4C, ArC), 64.33 (q, J = 37.67, OCH₂CF₃).

For **10c**: ¹H NMR (CD₃COCD₃): δ = 7.03 (d, J = 8.46 Hz, 2H, ArH), 6.94 (d, J = 8.30 Hz, 2H, ArH), 4.55–4.30 (m, O*CH*₂-CF₃), 2.16 (s, 3H, CH₃). ³¹P NMR (CD₃COCD₃): δ = -6.26 (s, [(OCH₂CF₃)₂P=N]_n), -1.59 (d, J = 67.76 Hz, CH₃Ph-NH(CF₃-CH₂O)₂P=N). ¹³C NMR (CD₃COCD₃): 134.59, 134.68 (2C, quaternary ArC), 131.02 (4C, ArC), 124.03 (q, J = 276.65 Hz, OCH₂CF₃), 64.23 (q, J = 37.63, OCH₂CF₃), 20.64 (ArCH₃).

For **10d**: ¹H NMR (CD₃COCD₃): $\delta = 5.81$ (m, 1H, CH₂CHCH₂), 5.17, 4.98 (2m, 2H, J = 6.53, CH₂CHCH₂), 4.37 (s, OCH₂CF₃), 3.52 (quin, J = 2.16 Hz, CH₂CH CH₂). ³¹P NMR (CD₃COCD₃): $\delta = -6.29$ (s, [(OCH₂CF₃)₂P=N]_n), -1.85 (d, J = 67.09 Hz, CH₂=CHCH₂(CF₃CH₂O)₂P=N). ¹³C NMR (CDCl₃): $\delta = 137.94$ (1C, CH₂CHCH₂), 124.25 (q, J = 208.12, 1C, OCH₂CF₃), 114.72 (1C, CH₂CHCH₂), 63.25 (q, J = 33.25, OCH₂CF₃), 44.15 (1C, CH₂CHCH₂).

To control the molecular weight, the ratio of monomer (1) to initiator (8a-d) was varied by changing the amount of monomer while keeping all other amounts constant (see Table 2).

Synthesis of Mixed Telechelic Polyphosphazene 12. To a stirred solution of PCl₅ (0.104 g, 0.5 mmol) in CH₂Cl₂ was added 5d (0.093 g, 0.25 mmol) at -78 °C. The reaction mixture was stirred at -78 °C for 1 h and allowed to warm to room temperature. ³¹P NMR spectroscopy of the reaction mixture indicated two doublets for 6d. To this the initiator solution was added 50 equiv of 1 (2.8 g, 12.5 mmol), and the polymerization was monitored by ³¹P NMR until complete conversion of 1 to polymer had occurred. A slight excess of 5b (0.267 g, 0.55 mmol) was then introduced, and the reaction mixture was stirred for 8 h. All volatiles were removed under reduced pressure, and the polymer was dissolved in 10 mL of THF. To this was added a 2-fold excess, per chlorine atom, of 1.5 M sodium trifluoroethoxide in THF, and the reaction mixture was stirred for 24 h at 25 °C. Polymer 12 was then precipitated into deionized water (3 \times) and hexane (2 \times) to give an adhesive white solid.

For 12: 1 H NMR (CD₃COCD₃): $\delta = 7.4-7.1$ (m, 4H, Br-Ph), 4.79–4.81 (b, O CH_2 CF₃), 5.85 (m, 1H, CH_2 CHCH₂), 5.34 (quin, J = 6.47 Hz, CH₂CH CH_2). 31 P NMR (CD₃COCD₃): $\delta = -6.31$ (s, [(OCH₂CF₃)₂P=N]_n), -1.59 (d, J = 33.87 Hz, CH₂=CHCH₂(CF₃CH₂O)₂P=N). 13 C NMR (THF): $\delta = 138.13$ (1C, quaternary ArC), 132.27 (2C, ArC), 121.47 (q, J = 277.13

Hz, 2C, OCH₂CF₃), 119.77 (2C, ArC), 114.90 (1C, quaternary ArC), 61.66 (q, J = 37.76 Hz, 1C, O CH_2 CF₃).

Acknowledgment. The authors thank the Federal Aviation Administration and the National Science Foundation Polymers Program for support of this work. J.M.N. and C.R.D. also thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for Postdoctoral Research Fellowships.

References and Notes

- Mark, J. E.; Allcock, H. R.; West, R. Inorganic Polymers; Prentice Hall: Englewood Cliffs, NJ, 1992.
- (2) Allcock, H. R.; Lampe, F. W. Contemporary Polymer Chemistry, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, 1991.
- (3) Allen, C. W. Chem. Rev. 1991, 91, 119.
- Allcock, H. R. *In Inorganic and Organometallic Polymers II*; Wisian-Neilson, P., Allcock, H. R., Wynne, K. J., Eds.; ACS Symposium Series 572; American Chemical Society: Washington, DC, 1994; Chapter 17.
- (5) Allcock, H. R.; Klingenberg, E. H. Macromolecules 1995, 28, 4351.
- Allcock, H. R.; Kim, C. Macromolecules 1991, 24, 2846.
- Allcock, H. R.; Dembek, A. A.; Kim, C.; Devine, R. L. S.; Shi, Y.; Steier, W. H.; Spangler, C. W. Macromolecules 1991, 24,
- (8) Allcock, H. R. In Biodegradable Polymers as Drug Delivery Systems; Langer, R., Chasin, M., Eds.; Marcel Dekker: New York, 1990.
- Honeyman, C. H.; Manners, I.; Morrissey, C. T.; Allcock, H.
- R. J. Am. Chem. Soc. **1995**, 117, 7035. (10) Allcock, H. R.; Crane, C. A.; Morrissey, C. T.; Nelson, J. M.; Reeves, S. D.; Honeyman, C. H.; Manners, I. Macromolecules 1996, 29, 7740.
- (11) Allcock, H. R.; Crane, C. A.; Morrissey, C. T.; Olshavsky, M. A. Inorg. Chem. 1999, 32, 280.
- (12) Allcock, H. R.; Nelson, J. M.; Reeves, S. D.; Honeyman, C. H.; Manners, I. Macromolecules 1997, 30, 50.

- (13) Allcock, H. R.; Reeves, S. D.; Nelson, J. M.; Crane, C. A. Macromolecules 1997, 30, 2213.
- (14) Nelson, J. M.; Allcock, H. R. Macromolecules 1997, 30, 1854.
- (15) Nelson, J. M.; Primrose, A. P.; Hartle, T. J.; Allcock, H. R. Macromolecules 1998, 31, 947.
- (16) Peters, M. A.; Belu, A. M.; Linton, R. W.; Dupray, L.; Meyer, T. J.; DeSimone, J. M. J. Am. Chem. Soc. 1995, 117, 3380.
- (17) Nakagawa, Y.; Matyjaszewski, K. Polym. Prepr., Am. Chem. Soc. Div. Polym. Chem. 1996, 37 (2), 270.
- (18) Nakagawa, Y.; Miller, P.; Pacis, C.; Matyjaszewski, K. Polym. Prepr., Am. Chem. Soc. Div. Polym. Chem. 1997, 38 (1), 701.
- Goethals, E. J. Telechelic Polymers: Synthesis and Applications; CRC Press: Boca Raton, FL, 1989.
- (20) Lindsell, W. E.; Tait, S. Polymer 1997, 38, 2835.
- (21) Huang, J.; Huang, X.; Zhang, S. Macromolecules 1995, 28, 4421.
- (22) Lu, Z.; Huang, X.; Huang, J.; Pan, G. Macromol. Rapid Commun. 1998, 19, 537.
- (23) Tohyama, M.; Hirao, A.; Nakahama, S.; Takenaka, K. Macromol. Chem. Phys. 1996, 197, 3135.
- Hirao, A.; Hayashi, M.; Nakahama, S. Macromolecules 1996, 29, 3353.
- (25) Hirao, A.; Nagahama, H.; Ishizone, T.; Nakahama, S. Mac-
- romolecules 1993, 26, 2145. Ueda, K.; Hirao, A.; Nakahama, S. Macromolecules 1990, 23,
- (27) Labeau, M.-P.; Cramail, H.; Deffieux, A. Polym. Int. 1998,
- 41, 453. Cernohous, J. J.; Macosko, C. W.; Hoye, T. R. Macromolecules
- **1998**, 31, 3759. (29) Neilson, R. H.; Wisian-Neilson, P. Inorg. Synth. 1989, 25, 69.
- (30) Wisian-Neilson, P.; Neilson, R. H. J. Am. Chem. Soc. 1980, 102, 2848.
- (31) Painter, P. C.; Coleman, M. M. Fundamentals of Polymer Science; Technomic Publishing: Lancaster, 1994.
- (32) Prange, R.; Allcock, H. R., submitted to Macromolecules.
- (33) Mourey, T. H.; Miller, S. M.; Ferrar, W. T.; Molaire, T. R. Macromolecules 1989, 11, 4286.

MA990318F